Conference Papers
A bibliometric study on artificial intelligence in education for two decades
- A bibliometric study on artificial intelligence in education for two decades
- The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020) (2020: Hong Kong)
-
- Hong Kong
-
- 1997.7 onwards
-
- Unknown or Unspecified
- BACKGROUND: Research on Artificial Intelligence in Education (AIEd) has become increasingly active during the past 20 years, with great interest, rich literature, and huge diversity. The diversity in research topics and technologies keeps increasing along with the tremendous growth in the application scope of AIEd research. A comprehensive overview of this field is necessary to understand what had been concerned in AIEd research, what is going on in the field of AIEd, and what might be the future of AIEd research. METHODS: This paper combined the structural topic modeling (STM) with the bibliometric analysis to automatically identify prominent research topics from the large-scale AIEd literature in the past two decades. Specifically, by using STM, we uncovered important research topics concerned within the AIEd community. The evolution of these topics was explored by using a nonparametric Mann-Kendall (MK) trend test. In addition, the correlation between these topics was further explored and visualized based on a semi-parametric Gaussian procedure. RESULTS: The annual trend of publications concerning AIEd had grown consistently across the past 20 years, indicating that research on AIEd had received a growing interest from academia Analyses on topical trends, correlations, and clusters reveal distinct developmental trends of these topics and promising research orientations. Specifically, the top six topics having the highest proportions in the dataset were cognition and perception, programming education, prediction, MOOCs, semantic Web and recommender systems, assessment and feedback, and emotion detection. Results of the MK test highlighted five topics receiving an increase in research interest, including prediction, assessment and feedback, flipped classroom and biosignal data, STEM education, and English language learning. In addition, several inter-topic research directions were identified, including 1) flipped classroom and biosignal data, emotion detection, and game-based learning, 2) artificial intelligence algorithms and prediction, 3) mobile and robotics-based learning and STEM education, as well as 4) English language learning, MOOCs, semantic Web and recommender systems, assessment and feedback, and natural language processing. CONCLUSIONS: The topic-based bibliometric analysis contributed to the community of AIEd by providing a comprehensive overview. The exploration of important topics, topic prevalence and developments, and emerging inter-topic directions helps identify and compare current and potential scientific strengths. These findings help educators and researchers promote current and potential competitive research areas and enhance scientific communication and collaborations with promising countries/regions or institutions in specific research areas to bolster the scientific activities of AIEd. Copyright © 2020 The Education University of Hong Kong (EdUHK).
- Paper presented at The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020), Hong Kong, China.
-
- English
- Conference Papers
- https://bibliography.lib.eduhk.hk/bibs/d8062682
- 2022-02-11
Recent Conference Papers
Avoiding the “rat race”: Hong Kong students’ sense of belonging to a Chinese university in the Greater Bay AreaConference Papers
Rethinking academic careers with an education focus: A self-narrative from Hong KongConference Papers
Equity, diversity and inclusion in Hong Kong education: Associated challenges and opportunities, and the roles of policy and leadershipConference Papers
Exploring the moderating role of learner belief on the interplay between motivation and willingness to communicate in AI-enhanced formative assessment English classrooms: a study among Hong Kong university studentsConference Papers
Autonomy and relatedness: Motivating Hong Kong kindergarten teachers in an online professional development courseConference Papers
Young children’s math competence in Hong Kong: The influence of working memory, self-regulation, and family socioeconomic statusConference Papers
Exploring the domain-specific relations between Chinese language abilities and Mathematical skills in Hong Kong kindergarten childrenConference Papers
Preservice teachers’ experiential learning: Production of digital stories to nurture children’s positive valuesConference Papers