會議論文
A bibliometric study on artificial intelligence in education for two decades
- A bibliometric study on artificial intelligence in education for two decades
- The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020) (2020: Hong Kong)
-
- Hong Kong
-
- 1997.7 onwards
-
- 未指定或無法歸類
- BACKGROUND: Research on Artificial Intelligence in Education (AIEd) has become increasingly active during the past 20 years, with great interest, rich literature, and huge diversity. The diversity in research topics and technologies keeps increasing along with the tremendous growth in the application scope of AIEd research. A comprehensive overview of this field is necessary to understand what had been concerned in AIEd research, what is going on in the field of AIEd, and what might be the future of AIEd research. METHODS: This paper combined the structural topic modeling (STM) with the bibliometric analysis to automatically identify prominent research topics from the large-scale AIEd literature in the past two decades. Specifically, by using STM, we uncovered important research topics concerned within the AIEd community. The evolution of these topics was explored by using a nonparametric Mann-Kendall (MK) trend test. In addition, the correlation between these topics was further explored and visualized based on a semi-parametric Gaussian procedure. RESULTS: The annual trend of publications concerning AIEd had grown consistently across the past 20 years, indicating that research on AIEd had received a growing interest from academia Analyses on topical trends, correlations, and clusters reveal distinct developmental trends of these topics and promising research orientations. Specifically, the top six topics having the highest proportions in the dataset were cognition and perception, programming education, prediction, MOOCs, semantic Web and recommender systems, assessment and feedback, and emotion detection. Results of the MK test highlighted five topics receiving an increase in research interest, including prediction, assessment and feedback, flipped classroom and biosignal data, STEM education, and English language learning. In addition, several inter-topic research directions were identified, including 1) flipped classroom and biosignal data, emotion detection, and game-based learning, 2) artificial intelligence algorithms and prediction, 3) mobile and robotics-based learning and STEM education, as well as 4) English language learning, MOOCs, semantic Web and recommender systems, assessment and feedback, and natural language processing. CONCLUSIONS: The topic-based bibliometric analysis contributed to the community of AIEd by providing a comprehensive overview. The exploration of important topics, topic prevalence and developments, and emerging inter-topic directions helps identify and compare current and potential scientific strengths. These findings help educators and researchers promote current and potential competitive research areas and enhance scientific communication and collaborations with promising countries/regions or institutions in specific research areas to bolster the scientific activities of AIEd. Copyright © 2020 The Education University of Hong Kong (EdUHK).
- Paper presented at The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020), Hong Kong, China.
-
- 英文
- 會議論文
- https://bibliography.lib.eduhk.hk/tc/bibs/d8062682
- 2022-02-11
最近的會議論文
共同成功: 促進香港主流和非主流學生的福祉及學校與社會參與會議論文
語料庫在提升古代漢語教學效果中的角色會議論文
紀行致遠:香港融合教育回顧與展望會議論文
Comparing the effectiveness of an emotion regulation intervention for preservice teachers in Canada and Hong Kong會議論文
What we learnt from training Hong Kong teacher leaders about national educational system and development in mainland China會議論文
Closing the learning gap for ethnic minority children: A case study of early childhood education in Hong Kong會議論文
Supporting teacher leadership and growth會議論文
Teaching Hong Kong literature會議論文