會議論文
A bibliometric study on artificial intelligence in education for two decades
- A bibliometric study on artificial intelligence in education for two decades
- The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020) (2020: Hong Kong)
-
- Hong Kong
-
- 1997.7 onwards
-
- 未指定或無法歸類
- BACKGROUND: Research on Artificial Intelligence in Education (AIEd) has become increasingly active during the past 20 years, with great interest, rich literature, and huge diversity. The diversity in research topics and technologies keeps increasing along with the tremendous growth in the application scope of AIEd research. A comprehensive overview of this field is necessary to understand what had been concerned in AIEd research, what is going on in the field of AIEd, and what might be the future of AIEd research. METHODS: This paper combined the structural topic modeling (STM) with the bibliometric analysis to automatically identify prominent research topics from the large-scale AIEd literature in the past two decades. Specifically, by using STM, we uncovered important research topics concerned within the AIEd community. The evolution of these topics was explored by using a nonparametric Mann-Kendall (MK) trend test. In addition, the correlation between these topics was further explored and visualized based on a semi-parametric Gaussian procedure. RESULTS: The annual trend of publications concerning AIEd had grown consistently across the past 20 years, indicating that research on AIEd had received a growing interest from academia Analyses on topical trends, correlations, and clusters reveal distinct developmental trends of these topics and promising research orientations. Specifically, the top six topics having the highest proportions in the dataset were cognition and perception, programming education, prediction, MOOCs, semantic Web and recommender systems, assessment and feedback, and emotion detection. Results of the MK test highlighted five topics receiving an increase in research interest, including prediction, assessment and feedback, flipped classroom and biosignal data, STEM education, and English language learning. In addition, several inter-topic research directions were identified, including 1) flipped classroom and biosignal data, emotion detection, and game-based learning, 2) artificial intelligence algorithms and prediction, 3) mobile and robotics-based learning and STEM education, as well as 4) English language learning, MOOCs, semantic Web and recommender systems, assessment and feedback, and natural language processing. CONCLUSIONS: The topic-based bibliometric analysis contributed to the community of AIEd by providing a comprehensive overview. The exploration of important topics, topic prevalence and developments, and emerging inter-topic directions helps identify and compare current and potential scientific strengths. These findings help educators and researchers promote current and potential competitive research areas and enhance scientific communication and collaborations with promising countries/regions or institutions in specific research areas to bolster the scientific activities of AIEd. Copyright © 2020 The Education University of Hong Kong (EdUHK).
- Paper presented at The International Conference on Education and Artificial Intelligence 2020 (ICEAI 2020), Hong Kong, China.
-
- 英文
- 會議論文
- https://bibliography.lib.eduhk.hk/tc/bibs/d8062682
- 2022-02-11
最近的會議論文
Autonomy and relatedness: Motivating Hong Kong kindergarten teachers in an online professional development course會議論文
Young children’s math competence in Hong Kong: The influence of working memory, self-regulation, and family socioeconomic status會議論文
Exploring the domain-specific relations between Chinese language abilities and Mathematical skills in Hong Kong kindergarten children會議論文
Preservice teachers’ experiential learning: Production of digital stories to nurture children’s positive values會議論文
繼往開來:語文教育與歷史教育的相互作用會議論文
小學文言文閱讀教學尋趣會議論文
Using the robot-assisted Attention-Engagement-Error-Feedback-Reflection (AEER) pedagogical design to develop machine learning concepts and facilitate reflection on learning-to-learn skills: Evaluation of an empirical study in Hong Kong primary schools會議論文
What is the language goal in EMI? An analysis of vocabulary demand in a high-stakes assessment in Hong Kong會議論文